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Abstract—The nonrecursive digital filters implementation
based on the RNS arithmetic is presented in this paper. In this
implementation popular moduli set {2n − 1, 2n, 2n + 1} with
diminished-one (diminished-1)2n + 1 encoded channel is used.
The diminished-one number system is used to avoid(n + 1)-bit
circuits in (2n + 1)-bit channel. Thus, in proposed approach all
operand have n-bit length. The proposed RNS architecture of
the filter consists of three main blocks: forward and reverse
converter and arithmetic processor for each channel, where
binary operations perform. Architecture for residue to binary
(reverse) convertor with diminished-1 encoded channel and ar-
chitecture for modulo multiplication have been proposed. Besides,
for all RNS channels, the systolic design is used for the efficient
realization of FIR filter. A numerical example illustrates the
principles of diminished-1 residue arithmetic, signal processing,
and decoding for FIR filters.

Keywords—Chinese remainder theorem, diminished-one, FIR
filters, residue number system, reverse converter.

I. I NTRODUCTION

In many digital signal processing systems, finite impulse
response (FIR) digital filters are frequently used because
of their stability and linear phase property. On other hand,
they are not suitable for recent applications demanding real-
time performance and low power consumption. The demand
for real-time digital signal processing with respect to power
consumption has forced the researchers to look for efficient
arithmetic algorithms, which can implement high speed digital
signal processor units. The systems based on Residue Number
System (RNS) have become the most popular as they take
advantage of all the benefits given by the parallelism and the
carry free computations.

Filter realizations using Residue Number System (RNS)
have been investigated in literature [1][2][3][4]. RNS is suit-
able for implementation of high-speed digital signal processing
due to their inherent parallelism, modularity, fault toleration
and local carry propagation properties. Arithmetic operations
like multiplication and addition can be carried out more effi-
ciently as RNS ensures localized carry propagation properties.
RNS is particularly suitable for implementing FIR filters where
multiplications and additions are the core operations. These
features make RNS beneficial for digital signal processing
applications, particularly, when large word length and high
throughput rate are required.
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The selection of the moduli set plays a critical role in
the improvement of the performance of RNS FIR filters [5].
The moduli set{2n − 1, 2n, 2n + 1} is used to design RNS
FIR filters in this paper for the following reasons: firstly,
it provides simpler design for converters; secondly, we can
utilize the dedicated hardware multipliers on FPGA platforms
to implement multiplications with acceptable cost for normally
encoded RNS channel; thirdly, since it is the most commonly
used one in previous works, using this moduli set makes our
work applicable to the most existing designs.

The diminished-1 representation of binary numbers was
introduced in [6] to speed up the modulo(2n + 1) arithmetic
operations. Since onlyn bits are required for the representation
of any digit in RNS, the diminished-1 representation can lead
to implementations with delay and area that approach to delays
and areas of the modulo(2n − 1) and 2n representations.
A lot of papers on the design of modulo(2n − 1) adders
and multipliers for diminished-1 operands have already been
published [7], [8], [9], [10]. However, special treatment is
required for operands equal to zero. Since this can lead to
implementations with increased area and delay complexity,
the efficient integration of zero handling into modulo(2n +1)
arithmetic units is an open problem.

An RNS-based architecture of the filter consists of three
main blocks. As first, all operands are converted into their
corresponding sets of residues with binary-to-residue (forward)
converters, according to the specified moduli set. Then, the
arithmetic processing is performed in parallel in each channel
following the corresponding modulo arithmetic. Finally, the
RNS representation of the results is converted back to binary
with residue-to-binary (reverse) converters.

Forward converters for RNS with diminished-1 encoded
channel are proposed in [11], while modulo(2n + 1) adder
architectures for diminished-1 operands with integrated zero
handling are proposed in [12], and modulo(2n+1) multipliers
for diminished-1 operands including zero indication bits are
proposed in [13].

This paper proposes a new approach to FIR filters design
based on the RNS with diminished-1 encoded channel and also
architecture for the reverse converter for RNS with diminished-
1 encoded channel.

Organization of the paper is as follows; after recalling the
diminished-1 arithmetic in Section II, the architecture of N-th
order recursive digital filter is presented in Section III.

II. D IMINISHED-1 ARITHMETIC

To represent all integers in RNS using modulo(2n + 1),
(n+1) bits are required. The additional bit is required in order

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

56doi: 10.11601/ijates.v2i2.32 



to represent the number2n = 〈−1〉2n+1. To overcome the
problem of performing binary arithmetic with this additional
bit, a modified binary number system is used in order to avoid
additions and multiplications involving the additional bit. This
allows the additional bit to be only 1 when the number to be
represented is 0, which can be achieved by subtracting 1 from
the normal binary number.

The normal representation and this diminished-1 representa-
tion are indicated in the Table I forn = 4. When performing

TABLE I
CORRESPONDENCE BETWEEN NORMAL, BINARY AND DIMINISHED -1

REPRESENTATIONS

Normal Binary Diminished-1

0 00000 1
1 00001 2
2 00010 3
3 00011 4
4 00100 5
5 00101 6
6 00110 7
7 00111 8
8 01000 9 (−8)
9 (−8) 01001 10 (−7)

10 (−7) 01010 11 (−6)
11 (−6) 01011 12 (−5)
12 (−5) 01100 13 (−4)
13 (−4) 01101 14 (−3)
14 (−3) 01110 15 (−2)
15 (−2) 01111 16 (−1)
16 (−1) 10000 0

arithmetic for mod(2n + 1) using diminished-1 system, all
input operands and the corresponding results are expressed in
diminished-1 form. Letx′ be diminished-1 representation of
normal binary numberx ∈ [0, 2n], namely

x′ = 〈x − 1〉2n+1. (1)

In (1), when x 6= 0, x′ ∈ [0, 2n − 1] is an n-bit number,
therefore(n + 1)-bit circuits can be avoided in this case.
However, whenx = 0, x′ = 2n is an (n + 1)-bit number.
This leads to special treatment forx′ = 0. According to this
representation a numberx′ is represented asx′

nX ′, wherex′

n

is the zero indication bit andX ′ = x′

n−1x
′

n−2 . . . x′

0 is the
magnitude representation [12].

A. Binary to diminished-1 RNS convertor

With the diminished-1 encoded channel, a very efficient
binary to diminished-1 RNS converter is proposed for the
{2n − 1, 2n, 2n + 1} moduli set [11]. An 3n-bits integer

X
RNS
−→ (x1, x2, x

′

3) in the dynamic range is represented as

X =

3n−1∑

i=0

Xi2
i = N22

2n + N12
n + N0. (2)

As explained above, the diminished-1 representation uses
the modulo ofX − 1 instead ofX . Computation of the value
x′

3 for this representation, with an identical approach as in
standard(2n + 1) channel, is performed as:

x′

3 =〈X − 1〉2n+1 = 〈1 + N2 + N1 + N0〉2n+1. (3)

Only one CSA (carry save adder) and one full modulo(2n+
1) adder are required for the diminished-1 modulo(2n + 1)
RNS converter [11].

B. Diminished-1 modulo (2n + 1) addition

Ordinary addition in diminished-1 number system is per-
formed as follows [14]:

S′ = 〈x′ + y′ + 1〉2n+1. (4)

Modulo (2n+1) addition can be realized by an end-around-
carry adder, where the carry-out is inverted and fedback into
the carry-in, i.e.cin = cout. This can be achieved with
two adders to prevent a combinational loop. The carry-out
inversion logic does not work when both summands are equal
to zero. Therefore an additional AND gate has to be added as
the control input for a multiplexer, which selects the correct
outputx′ + y′ = 2n, whenx′ = y′ = 2n [15].

Diminished-1 modulo(2n + 1) addition is now defined by:

〈x′+y′+1〉2n+1 =

{

2n if x = 2n ∧ y = 2n

〈x′ + y′〉2n+1 + 1 otherwise
(5)

J.-L. Beuchat propose an alternative definition for modulo
(2n + 1) addition [16]. Let us define the(n + 2)-bit integer
S = sn+1sn . . . s0 = x′ + y′. The modulo(2n + 1) addition
can be expressed as:

〈x′+y′+1〉2n+1 = 〈x′+y′〉2n+1+sn+12
n +sn+1 ∨ sn. (6)

Figure 1 depicts the resulting hardware operator which
requires carry-propagate adder, a NOR gate and incre-
menter [16].

��� n + 1��� n + 1

��� n

��� n + 1

��� n + 1

Incrementer

Adder

Z = 〈x′ + y′ + 1〉2n+1

x′ y′

S1 = sn+1snsn−1 . . . s0

S2 = sn+1sn−1 . . . s0

sn+1 ∨ sn

z0

s0

zn−2

sn−1

zn−1

sn+1

sn+1 ∨ sn

(a) (b)

Fig. 1. The architecture of the modulo(2n + 1) adders for diminished-1
encoded channel (a). Carry propagation increment stage (b).

Efficient parallel VLSI diminished-1 structures for modulo
(2n + 1) two-operand addition have also been proposed re-
cently [9].

Validity of the above diminished-1 addition of two(n + 1)
bit numbers, is demonstrated on following example.

Let x′ = 16 andy′ = 10. Then
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x′ = 10000
y′ = 01010

S1 = 011010

S2 = 01010
sn+1 ∨ sn = 0

S′ = x′ + y′ + 1 01010

Thus,S′ = 10, which can be verified to be true1.

C. Diminished-1 modulo (2n + 1) multiplication

The diminished-1 multiplication is defined as [17], [14]:

Q′ = 〈〈x′ × y′〉2n+1 + x′ + y′〉2n+1. (7)

The modulo(2n +1) multiplication algorithm can be easily
adapted for the diminished-1 number representation of input
operands and output product. Thereby, the two additional
termsx′ and y′ have to be added in the modulo carry save
adder, resulting in small increasing of area and delay. The
special case ofx′y′ = 0 has to be treated separately and the
constant correction term be adapted.

The architecture of diminished-1 modulo(2n +1) multipli-
cation is presented in [17]. If the input residues are(n + 1)
bits wide, the partial products for modulo2n +1 multiple are
arranged asn bits wide vectors. The partial product generation
for inputs of 5 bits width is shown in Table II. Obviously,
4 bits x3x2x1x0 are required for the representation nonzero
diminished-1 binary numbers. In this multiplication, the bits

TABLE II
PARTIAL PRODUCT GENERATION MOD24 + 1

26 25 24 23 22 21 20

x′

0y′

3 x′

0y′

2 x′

0y′

1 x′

0y′

0 = pp0

x′

1
y′

3
x′

1
y′

2
x′

1
y′

1
x′

1
y′

0
x′

1
y′

3
= pp1

x′

2
y′

3
x′

2
y′

2
x′

2
y′

1
x′

2
y′

0
x′

2
y′

3
x′

2
y′

2
= pp2

x′

3
y′

3
x′

3
y′

2
x′

3
y′

1
x′

3
y′

0
x′

3
y′

3
x′

3
y′

2
x′

3
y′

1
= pp3

x′

3
x′

2
x′

1
x′

0
= x′

y′

3
y′

2
y′

1
y′

0
= y′

0 0 0 0 = COR

with weight greater than23, which are to the left of the straight
line, are complemented and repositioned to the right of the
line.

The architecture of proposed modulo2n + 1 multiplier for
diminished-1 encoded channel is shown in Figure 2. Assuming
the coefficient word length of 4-bits and input sample word
length of 4-bits, in Fig. 2 is shown the hierarchical decom-
position of Wallace tree logic. The partial sum are added
by using five carry-save-adders (CSA) and modulo 17 adder
which is realized as carry-propagate-adder with end-around-
carry. Partial product is generated in parallel.

The principle of the proposed memoryless-based implemen-
tation of partial product generator is shown in Fig 3. It consists
of n 2-to-1 multiplexers, wheren is the input sample word
length. The partial product is generated by connecting zero
and coefficient value to the MUX data inputs, input data bits
to the select input, and circular shifting of the MUX output
s − 1 bits to the left, for1 ≤ s ≤ n. After circular shifting,
s − 1 LSB bits are used as complement.

An implementation of the modulo 17 partial product gen-
erator forpp2 is shown in Figure 4. The small circles above
the register represent a complement of the input bit.

1S′ = 〈16 + 10〉17 + 1 = 10

x′ y′

Partial products generator
pp0 pp1 pp2 pp3 x′ y′

CSA CSA

CSA

CSA

COR

CSA

S1 C1 S2 C2

S3 C3

S4 C4

S5 C5

Modulo 17 adder

1 0

︸︷︷︸

Q′

x′

4

0
��� 4��� 4

��� 4

���
1

Fig. 2. Architecture of modulo2n + 1 multiplier for diminished-1 encoded
channel

0 1 0 1 0 1 0 1

x′

3 x′

2 x′

1 x′

0

Rotation Rotation Rotation Rotation

pp3 pp2 pp1 pp0

3 2 1 0

y′

���4

���4 ���4 ���4 ���4

���1 ���1 ���1 ���1

���4 ���4 ���4 ���4

Fig. 3. Partial products generator.

0 1 0 1 0 1 0 1

x′

2
y′

3 y′

2 y′

1 y′

0

x′

2y′

3 x′

2y′

2 x′

2y′

1 x′

2y′

0

pp2

pp2 Register

Fig. 4. Partial productpp2 generator.

Validity of the above diminished-1 multiplication of two4
bit numbers is demonstrated on following example. Letx′ = 9
andy′ = 10. Then
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1010×1001

pp0 = 1 0 1 0
pp1 = 0 0 0 1
pp2 = 0 0 1 1
pp3 = 0 0 1 0
x′ = 1 0 1 0
y′ = 1 0 0 1

COR = 0 0 0 0

The first carry-save-adder

pp0 = 1 0 1 0
pp1 = 0 0 0 1
pp2 = 0 0 1 1

S1 = 1 0 0 0
C1 = 0 0 1 1

1

The second carry-save-adder

pp3 = 0 0 1 0
x′ = 1 0 1 0
y′ = 1 0 0 1

S2 = 0 0 0 1
C2 = 1 0 1 0

0

The third carry-save-adder

S1 = 1 0 0 0
C1 = 0 1 1 1
S2 = 0 0 0 1

S3 = 1 1 1 0
C3 = 0 0 0 1

1

The fourth carry-save-adder

S3 = 1 1 1 0
C3 = 0 0 1 1
C2 = 0 1 0 0

S4 = 1 0 0 1
C4 = 0 1 1 0

1

The fifth carry-save-adder contains only half-adders since
COR = 0000.

S4 = 1 0 0 1
C4 = 1 1 0 1

S5 = 0 1 0 0
C5 = 1 0 0 1

0

Finally

S5 = 0 1 0 0
C5 = 0 0 1 0

= 0 0 1 1 0
1

Q′ = 0 1 1 1

Thus Q′ = 7, which can be verified to be true:Q′ =
〈
〈9 ×

10〉17 + 9 + 10
〉

17
= 7.

D. RNS to binary conversion

Consider the well-known 3-moduli set{m1 = 2n, m2 =
2n − 1, m3 = 2n + 1} which has a dynamic range approxi-
mately equal to3n bits. Wang, Jullien and Miller [18] show
that the decoded binary number is obtained as

X = Y 2n + x1, (8)

where

Y =
〈

(−22n−1 +2n−1)x3 +(22n−1+2n−1)x2−2nx1

〉

22n
−1

(9)
This operation does not need any computation because equa-
tion (8) amounts to concatenation ofY obtained in (9) with
x1 as LSBs.

Residue numberx3 is encoded in diminished-1 asx3 =
x′

3 + 1. Now let

A =
〈
− 2nx1

〉

22n−1
, (10)

B =
〈
(22n−1 + 2n−1)x2

〉

22n−1
, (11)

C =
〈
(−22n−1 + 2n−1)(x′

3 + 1)
〉

22n
−1

. (12)

To evaluateA, B and C, the following property is used:
modulo (2s − 1) multiplication of a residue number by2t,
where s and t are positive integers, is equivalent tot bit
circular left shifting.

Assuming thatx1 is expressed in2n bits, wheren the most
significant bits are zeros

x1 = 0 0 . . . 0
︸ ︷︷ ︸

n

x1,n−1x1,n−2 . . . x1,0
︸ ︷︷ ︸

n

(13)

and

A = x1,n−1x1,n−2 . . . x1,0
︸ ︷︷ ︸

n

1 1 . . . 1
︸ ︷︷ ︸

n

(14)

where negative value of a number of modulo(22n − 1) is the
one’s complement of that number.

Assuming that2n bit expression ofx2 is given by:

x2 = 0 0 . . . 0
︸ ︷︷ ︸

n

x2,n−1x2,n−2 . . . x2,0
︸ ︷︷ ︸

n

(15)

it follows that

B = x2,0 0 . . . 0
︸ ︷︷ ︸

n

x2,n−1 . . . x2,1
︸ ︷︷ ︸

n−1

+0 x2,n−1 . . . x2,0
︸ ︷︷ ︸

n

0 0 . . . 0
︸ ︷︷ ︸

n−1

= x2,0 x2,n−1 . . . x2,0
︸ ︷︷ ︸

n

x2,n−1 . . . x2,1
︸ ︷︷ ︸

n−1

.

(16)
The value ofC, as given in (12), is:

C =
〈
(−22n−1 + 2n−1)x′

3

〉

22n−1
− K (17)

where

K = 22n−1 − 2n−1 = 0 1 . . . 1
︸ ︷︷ ︸

n

0 . . . 0
︸ ︷︷ ︸

n−1

. (18)

Let the(n + 1) bit expression ofx′

3 is given by:

x′

3 = x′

3n x′

3,n−1x
′

3,n−2 . . . x′

3,0
︸ ︷︷ ︸

n

(19)

or

x′

3 = 2nx′

3n + X ′

3. (20)
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Therefore, parameterC given in (17) can be evaluated as
follows: Substituting (20) into (17) and applying the above-
mentioned property, it follows that

〈
(−22n−1 + 2n−1)X ′

3

〉

22n−1

=
〈
− (x′

3,0 0 . . . 0
︸ ︷︷ ︸

n

x′

3,n−1 . . . x′

3,1
︸ ︷︷ ︸

n−1

)

+ 0 x′

3,n−1 . . . x′

3,0
︸ ︷︷ ︸

n

0 . . . 0
︸ ︷︷ ︸

n−1

〉

22n−1

=
〈
(x′

3,0 x′

3,n−1 . . . x′

3,0
︸ ︷︷ ︸

n

x′

3,n−1 . . . x′

3,1
︸ ︷︷ ︸

n−1

)

+ 0 1 . . .1
︸ ︷︷ ︸

n

0 . . . 0
︸ ︷︷ ︸

n−1

〉

22n−1

=
〈
(x′

3,0 x′

3,n−1 . . . x′

3,0
︸ ︷︷ ︸

n

x′

3,n−1 . . . x′

3,1
︸ ︷︷ ︸

n−1

) + K
〉

22n
−1

(21)

and
〈
(−22n−1 +2n−1)2nx′

3n

〉

22n
−1

= 0 x′

3n . . . x′

3n
︸ ︷︷ ︸

n

0 . . . 0
︸ ︷︷ ︸

n−1

. (22)

Adding (21), (22) and subtracting (18), it is obtained

C =x′

3,0 x′

3,n−1 . . . x′

3,0
︸ ︷︷ ︸

n

x′

3,n−1 . . . x′

3,1
︸ ︷︷ ︸

n−1

) + 0 x′

3n . . . x′

3n
︸ ︷︷ ︸

n

0 . . . 0
︸ ︷︷ ︸

n−1

=x′

3,0 xor,n−1 . . . xor,0
︸ ︷︷ ︸

n

x′

3,n−1 . . . x′

3,1
︸ ︷︷ ︸

n−1

,

(23)
wherexor,i = x′

3,i∨x′

3n, for 0 ≤ i ≤ n−1 (∨ denotes a logic
OR operation). Note thatx3,i andx3n, can never be 1 at the
same time.

To implement the modulo addition of three2n-bit numbers
(A, B andC) efficiently, we may use2n full-adders as carry-
save-adders (CSA) to convert three2n bit numbers into two.
The carry-out from the most significant bit (c2n) is fed to
the least significant bit position (c0). Then fast2n-bit carry-
propagate-adder (CPA) with end-around-carry (EAC), is used
to perform the modulo addition of two numbers to obtain the
final result. The architecture is shown in Fig. 5.

FA FA • • • FA

• • •

y2n−1y2n−2 y0

CPA with EAC

c1c2n−1c2n

s2n−1 s2n−2 s0

cout

x′

3,0 xor,n−1 x′

3,1

x1,n−1 x1,n−2 1x2,0 x2,n−1 x2,1

Fig. 5. The implementation of modulo(22n − 1) addition of three2n-bit
numbersA, B andC.

E. An example

Consider the moduli set{16, 15, 17} which is a special case
of the moduli set{2n, 2n−1, 2n+1} for n = 4. To convert the

RNS numberX = (12, 3, 9) into its corresponding weighted
binary representation, we have

x1 = 12 1100
x2 = 3 0011
x′

3 = 9 − 1 = 8 0 1000

Based on (14), (16) and (23),Y can be computed as

A = 0011 1111
B = 1001 1001
C = 1100 0011 +

Sum vector = 0110 0101 s2n−1s2n−2 . . . s0

Carry vector = |1| 0011 011 c2nc2n−1 . . . c1
1

|0| 1001 1100

cout = 0 +

Correct Result:Y = 1001 1100

Finally, based on the equation (8), the final weighted binary
number,X , can be simply calculated as

X = Y 24 + x1 = 1001 1100 1100 = 2508.

Thus,X = 2508, which can be verified to be true.

III. A RCHITECTURE OF THEFILTER

Difference equations for each channel of FIR filter, imple-
mented as RNS, can be defined as:

yj(n) =
〈 N−1∑

i=0

〈bi,jxj(n − i)〉mj

〉

mj
, for j = 1, 2, 3 (24)

where xj(n) and yj(n) are the residue representations of
the input and the output signals of the filter modulomj,
respectively, andbi,j , i = 0, 1, 2, . . . , N − 1 are the filter
coefficients in RNS representation.

FIR filter can be implemented in a conventional scheme
using delay elements. The delay elements actually pass the
values delaying them by certain amount of time so that the
signal values of the previous steps are multiplied with the
corresponding coefficients. In this process, at each step, we
need the computation of whole function.

The same FIR filter can be realized using Systolic Multiply-
Accumulate architecture by implementing a pipelined Direct-
Form filter [19], as depicted in Fig. 6. In this technique, the
computation is partitioned into smaller parcels that can be
assigned to a series of different concurrent processing elements
in such a way as to achieve advantage in speed.

z−1 z−1

z−1

z−1

+++

×××

z−1

+++

×××

•••z−1

+++

×××

•••

〈b0 − 1〉m3
〈b1 − 1〉m3

〈bN − 1〉m3

0

〈x(n) − 1〉m3

〈y(n) − 1〉m3

Fig. 6. Systolic realization of diminished-1 encoded channel (m3 = 2n +1)
of N th-order nonrecursive digital filter. One processing element is dashed part
of figure.

This linear phase lowpass filter, designed by means of
published program based on the Parks-McClellan algorithm, is
normalized so that the passband edge is 0.4π, stopband edge is

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

60



0.5π and the minimum stopband attenuation is 32.625dB. The
filter coefficients are shown in Table III for double precision
(the IEEE 754 standard) and for 10-bit precision in integer
notation.

TABLE III
THE 31TH-ORDERFIR LOWPASS FILTER COEFFICIENTS FOR MODULI

SET(2n − 1, 2n2n + 1}, WITH n = 6.

Coefficientsbi Double precision Int. RNS numbera

bi,1 bi,2 b′i,3

b0 = b24 –0.0005790732070 0 / / /
b1 = b23 0.0107143423917 5 5 5 4
b2 = b22 0.0056224531799 3 3 3 2
b3 = b21 –0.0121381434840 –6 58 57 58
b4 = b20 –0.0186695715150 –10 54 53 54
b5 = b19 0.0085434429402 4 4 4 3
b6 = b18 0.0385495109566 20 20 20 19
b7 = b17 0.0119972274970 6 6 6 5
b8 = b16 –0.0606997415311 –31 33 32 33
b9 = b15 –0.0684021145565 –35 29 28 29
b10 = b14 0.0782461959053 40 40 40 39
b11 = b13 0.3044489251280 156 28 30 25

b12 0.4150604524227 213 21 24 17

aThe RNS numberb′i,3 = 〈bi〉m3
is diminshed-1 coded.

Since integer values of coefficientsb0 andb31 are equal to
zero, the filter length is reduced toN = 30, as it is shown in
Table III.

Integer values in the third column in Table III are
transformed from floating point value (second column) in
two steps. The first step is the conversion of floating point
filter coefficients,b, into binary stringb using two MATLAB

c©

functions, Q_1=quantizer(’round’,Format) and
b_binary=num2bin(Q_1,b). Value of parameter
Format creates parameters of binary numbers:
[wordlength,fractionlength] for signed fixed-
point mode. For 10-bit precision format these parameters are
wordlength=10 and fractionlength=9.

This paper investigates binary-to-residue converter for
the modulo set{63, 64, 65} with diminished-1 encoded
2n + 1 channel. In the following example we de-
scribe the fixed point-to-residue number system conver-
sion of coefficient b1. Double precision of filter coeffi-
cient b1 is −0.012138143484039 which is converted into
binary number b_binary=1111111010, then into in-
teger numberb_int=-6, and finally into RNS number
b_RNS=(58,57,59).

The filter generated by RNS moduli set{2n−1, 2n, 2n +1}
with diminished-1 encoded channel, forn = 6 provides the
dynamic rangeM = 262 080. Hereby the filter can operate
in this range and provide better bit efficiency than existing
standard RNS based filters.

A. Filter Performance

The simulation, performed in Matlab (R2010a), depicts the
effects of this approach on the filter design.

Assume that the data sequence is quantized to 8 bits
(including sign) and that filter must be implemented without
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Fig. 7. Attenuation response (top) and quantization error for the coefficient
rounding to 9-bit (bottom).

rounding error. An absolute upper bound of filter response
|ym(n)| is given by equation (25)

|ym(n)| ≤max{|x(n)|}
23∑

k=1

|bk| = 216320

≈ 17.72 bits.

(25)

The moduli set{63, 64, 65} provides a dynamic range of
17.99 bits, which is adequate for the most practical cases
since the bound of 17.87 bits, given by (25), is extremely
pessimistic [20].

Figure 8 shows impulse response of the RNS channels. In
{64, 63, 65} proposed residue number system unit sample is

δ(n) =

{

(51, 54, 47), for n = 0

(0, 0, 64), for n > 0.
(26)

First two channels are normally encoded, but the third is
diminished-1 encoded.
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Fig. 8. The impulse response of the RNS channels:2n channel, above;
2n − 1 in the middle;2n + 1 diminished-1 encoded channel, down.
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Response of each channel is symmetric about 11-th sample.
In diminished-1 encoded channel zero is coded with 64.

The impulse response of this digital filter is shown in Figure
9, where samples are given in integer form. The required
number of bits is the sum of the coefficient bits and data bits.
In this design it is 17 bits. Thus, dividing by217 the integer
response is transformed into fixed point response.
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Fig. 9. Impulse response of the RNS lowpass filter.

IV. CONCLUSION

The design of a finite impulse response digital filter in a
residue number system has been presented. The RNS coding
technique with diminished-1 encoded channel is attractive for
FIR filters which require only multiplication and addition
because these operations are very fast in an RNS. The ar-
chitecture of all building blocks, except residue-to-binary con-
verter with diminished-1 encoded channel and architectures for
modulo multiplication, has already been discussed in previous
papers. The architecture for reverse convertor that includes
diminished-1 encoded channel, which uses only binary adders
without memory blocks, is proposed in this paper. To achieve
high speed, new partial product generator combining with the
Wallace tree is adopted for the multipliers.

Future research includes the extension of this study to Xilinx
chips, the power-figure measurement and a full characteriza-
tion of each design option at layout level.
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